
A New Approach Slicing for Micro Data Publishing

Dr. S. Govinda Rao1 , D. Siva Prasad2, M. Eswara Rao1

1Dept. of CSE, TP inst. Of Science & Tech., BOBBILI, A.P., India
2Dept. of CSE. Rajah RSRKRR College ,BOBBILI, A.P., India

Abstract-More techniques, such as generalization and
bucketization, have been introduced for privacy preserving
micro data publishing. Recent tasks have cleared that
generalization loses some amount of information, especially for
large (high-dimensional) data. Bucketization, is the another
technique, does not prevent membership disclosure and does not
apply for data that do not have a clear separation between
quasi-identifying attributes and sensitive attributes. In this
paper, we introduce technique called slicing, which partitions
the data both horizontally and vertically. We represent that
slicing preserves best data utility than generalization and can be
used for membership disclosure protection. Another important
advantage of slicing is that it can handle high-dimensional data.
We shown how slicing can be used for attribute disclosure
protection and develop an efficient algorithm for computing the
sliced data that obey the ℓ-diversity requirement. Our workload
experiments confirm that slicing preserves better utility than
generalization and is more effective than bucketization in
workloads involving the sensitive attribute. Our experiments
also describes that slicing can be used to prevent membership
disclosure.
Key words: Generalization, buketization, slicing, ℓ-
diversity.

INTRODUCTION
Micro data has been studied extensively in recent years. The
micro data contain records each of which contains
information about an individual object, such as a person, a
household, or an company. Several micro data economization
techniques have been proposed. The most popular ones are
generalization for k-anonymity and bucketization for ℓ-
diversity. In both approaches, attributes are partitioned into
three categories:
(a) Attributes are identifiers that can uniquely identify an

individual, such as Name or Identification Number;
(b) Attributes are Quasi-Identifiers (QI), which the adversary

(possibly from other publicly-available databases) and
which, when taken together, can potentially identify an
individual, e.g., Date of join, Sex, and Zip code;

(c) Attributes are Sensitive Attributes (SAs), which are
unknown to the adversary and are considered sensitive,
such as Disease and Salary.

In both generalization and bucketization, one first removes
identifiers from the data and then partitions tuples into
buckets. The two techniques differ in the next step.
Generalization transforms the QI-values in each bucket into
“less specific but semantically consistent” values so that
tuples in the same bucket cannot be distinguished by their QI
values. In bucketization, one separates the SAs from the QIs
by randomly permuting the SA values in each bucket. The

anonymized data consists of a set of buckets with permuted
sensitive attribute values.

EXISTING SYSTEM:
First, many existing clustering algorithms (e.g., k- means)
requires the calculation of the “centroids”. But there is no
notion of “centroids” in our setting where each attribute
forms a data point in the clustering space. Second, k-medoid
method is very robust to the existence of outliers (i.e., data
points that are very far away from the rest of data points).
Third, the order in which the data points are examined does
not affect the clusters computed from the k-medoid method.
PROBLEMS IN EXITING SYSTEM
1. Existing privacy measures for membership disclosure

protection include differential privacy and presence.
2. Existing anonymization algorithms can be used for

column generalization, e.g., Mondrian. The algorithms
can be applied on the sub table containing only attributes
in one column to ensure the anonymity requirement.

3. Existing data analysis (e.g., query answering) methods
can be easily used on the sliced data.

PROPOSED SYSTEM:

We are proposing the technique called slicing, which will
divide the data both horizontally and vertically. We show that
slicing preserves better data utility than generalization and
can be used for membership disclosure protection. Another
important advantage of slicing is that it can handle high-
dimensional data. We show how slicing can be used for
attribute disclosure protection and develop an efficient
algorithm for computing the sliced data that obey the ℓ-
diversity requirement. Our workload experiments confirm
that slicing preserves better utility than generalization and is
more effective than bucketization in workloads involving the
sensitive attribute.
Advantages:
1. We introduce a novel data anonymization technique

called slicing to improve the current state of the art.
2. We show that slicing can be effectively used for

preventing attribute disclosure, based on the privacy
requirement of ℓ-diversity.

3. We develop an efficient algorithm for computing the
sliced table that satisfies ℓ-diversity. Our algorithm
partitions attributes into columns, applies column
generalization, and partitions tuples into buckets.
Attributes that are highly-correlated are in the same
column.

4. We conduct extensive workload experiments. Our results
confirm that slicing preserves much better data utility
than generalization. In workloads involving the sensitive

Dr. S. Govinda Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 678-680

www.ijcsit.com 678

attribute, slicing is also more effective than
bucketization. In some classification experiments, slicing
shows better performance than using the original data
(which may over fit the model). Our experiments also
show the limitations of bucketization in membership
disclosure protection and slicing remedies these
limitations.

Slicing Algorithms:
Algorithm tuple-partition(T, ℓ)
1. Q = {T}; SB = ∅.
2. while Q is not empty
3. remove the first bucket B from Q; Q = Q − {B}.
4. split B into two buckets B1 and B2, as in Mondrian.
5. if diversity-check(T, Q ∪ {B1,B2} ∪ SB, ℓ)
6. Q = Q ∪ {B1,B2}.
7. else SB = SB ∪ {B}.
8. return SB.

Algorithm diversity-check(T,T_, ℓ)
1. for each tuple t ∈ T, L[t] = ∅.
2. for each bucket B in T_
3. record f(v) for each column value v in bucket B.
4. for each tuple t ∈ T
5. calculate p(t,B) and find D(t,B).
6. L[t] = L[t] ∪ {hp(t,B),D(t,B)i}.
7. for each tuple t ∈ T
8. calculate p(t, s) for each s based on L[t].
9. if p(t, s) ≥ 1/ℓ, return false.
10. return true.

Steps to achieve the specified Proposed Approach
1. Original Data
2. Generalized Data
3. Bucketized Data
4. Multi-set-based Generalization Data
5. One-attribute-per-Column Slicing Data
6. Sliced Data

ORIGINAL DATA:
We conduct extensive workload experiments. Our results
confirm that slicing preserves much better data utility than
generalization. In workloads involving the sensitive attribute,
slicing is also more effective than bucketization. In some
classification experiments, slicing shows better performance
than using the original data.

Age Material status Pin code District
33 M 535557 VZM
34 UM 535558 VZM
45 M 535546 VSP
50 M 534431 SKLM
52 UM 534435 HYD
60 M 534436 HYD
60 UM 534431 SKLM

Table 1. Original data

GENERALIZED DATA:
Generalized Data, in order to perform data analysis or data
mining tasks on the generalized table, the data analyst has to
make the uniform distribution assumption that every value in
a generalized interval/set is equally possible, as no other
distribution assumption can be justified. This significantly
reduces the data utility of the generalized data.

Age Material status Pin code District
33-45 * 5355* VZM
33-45 * 5355* VSP
33-45 * 5355* VZM
50-60 * 5344* SKLM
50-60 * 5344* HYD
50-60 * 5344* HYD
50-60 * 5344* SKLM

Table 2. Geralizied table

BUCKETIZED DATA:
We show the effectiveness of slicing in membership
disclosure protection. For this purpose, we count the number
of fake tuples in the sliced data. We also compare the number
of matching buckets for original tuples and that for fake
tuples. Our experiment results show that bucketization does
not prevent membership disclosure as almost every tuple is
uniquely identifiable in the bucketized data.

Age Material status Pin code District
33
34
45

M
M

UM

535557
535558
535546

VZM
VZM
VSP

50
52
60
60

M
M

UM
UM

534431
534435
534436
534431

SKLM
HYD
HYD

SKLM
Table 3. Bucketized Data:

MULTI-SET-BASED GENERALIZATION DATA:
We observe that this multi-set-based generalization is
equivalent to a trivial slicing scheme where each column
contains exactly one attribute, because both approaches
preserve the exact values in each attribute but break the
association between them within one bucket.

Table 4. Multi-set based generalized table

Age
Material

status
Pin code District

33:1,34:1,45:1 M:2,UM:1 535546:1,535558:1,535557:1 VZM
33:1,34:1,45:1 M:2,UM:1 535546:1,535558:1,535557:1 VSP
33:1,34:1,45:1 M:2,UM:1 535546:1,535558:1,535557:1 VZM
50:1,52:1,60:2 M:2,UM:2 534431:2,534435:1,534436:1 HYD
50:1,52:1,60:2 M:2,UM:2 534431:2,534435:1,534436:1 SKLM
50:1,52:1,60:2 M:2,UM:2 534431:2,534435:1,534436:1 SKLM
50:1,52:1,60:2 M:2,UM:2 534431:2,534435:1,534436:1 HYD

Dr. S. Govinda Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 678-680

www.ijcsit.com 679

ONE-ATTRIBUTE-PER-COLUMN SLICING DATA:
We observe that while one-attribute-per-column slicing
preserves attribute distributional information, it does not
preserve attribute correlation, because each attribute is in its
own column. In slicing, one group correlated attributes
together in one column and preserves their correlation. For
example, in the sliced table shown in Table correlations
between Age and Material status and correlations between
Pin code and District are preserved. In fact, the sliced table
encodes the same amount of information as the original data
with regard to correlations between attributes in the same
column.

Table 5. One attribute per column slicing

SLICED DATA:
Another important advantage of slicing is its ability to handle
high-dimensional data. By partitioning attributes into
columns, slicing reduces the dimensionality of the data. Each
column of the table can be viewed as a sub-table with a lower
dimensionality. Slicing is also different from the approach of
publishing multiple independent sub-tables in that these sub-
tables are linked by the buckets in slicing.

Table 6. Sliced table

CONCLUSION
In this paper, we consider slicing where each attribute is in
exactly one column. An extension is the notion of
overlapping slicing, which duplicates an attribute in more
than one column. These releases more attribute correlations.
For example, in Table, one could choose to include the
Disease attribute also in the first column. That is, the two
columns are {Age, Marital status} and {Pin code, District}.
This could provide better data utility, but the privacy
implications need to be carefully studied and understood. It is
interesting to study the tradeoff between privacy and utility.
We plan to study membership disclosure protection in more
details. Our experiments show that random grouping is not
very effective. We plan to design more effective tuple
grouping algorithms.
Slicing is a promising technique for handling high-
dimensional data. By partitioning attributes into columns, we
protect privacy by breaking the association of uncorrelated
attributes and preserve data utility by preserving the
association between highly-correlated attributes. For
example, slicing can be used for anonymizing transaction
databases, which has been studied recently.
Finally, while a number of anonymization techniques have
been designed, it remains an open problem on how to use the
anonymized data. In our experiments, we randomly generate
the associations between column values of a bucket. This
may lose data utility. Another direction to design data mining
tasks using the anonymized data computed by various
anonymization techniques.

REFERENCES
1. Accoria. Rock web server and load balancer. http://www.accoria.com.
2. Amazon Web Services. Amazon Web Services (AWS).

http://aws.amazon.com.
3. V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load balancing on

web-server systems. IEEE Internet Computing, 3(3):28{39, 1999.
4. L. Cherkasova. FLEX: Load Balancing and Management Strategy for

Scalable Web Hosting Service. IEEE Symposium on Computers and
Communications, 0:8, 2000.

5. F5 Networks. F5 Networks. http://www.f5.com.
6. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee. Hypertext transfer protocol { http/1.1. In IETF RFC
2616, 1999.

7. Google Inc. Google App Engine. http://code.google.com/appengine/.
8. HaProxy. HaProxy load balancer. http://haproxy.1wt.eu/.
9. G. Hunt, E. Nahum, and J. Tracey. Enabling content-based load

distribution for scalable services. Technical report, 1997.
10. E. Katz, M. Butler, and R. McGrath. A scalable HTTP server: The

NCSA prototype. In Proc. First International Conference on the World
Wide Web, Apr. 1994

.

Age Material status Pin code District
33
34
45

M
M

UM

535557
535558
535546

VZM
VZM
VSP

50
52
60
60

M
M

UM
UM

534431
534435
534436
534431

SKLM
HYD
HYD

SKLM

 (Age, Material status) (Pin code, District)
(33,M)
(34,M)

(45,UM)

(535557,VZM)
(535558,VZM)
(535546,VSP)

(50,M)
(52,M)

(60,UM)
(60,UM)

(534431,SKLM)
(534435,HYD)
(534436,HYD)

(534431,SKLM)

Dr. S. Govinda Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (5) , 2013, 678-680

www.ijcsit.com 680

