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Abstract-More techniques, such as generalization and 
bucketization, have been introduced for privacy preserving 
micro data publishing. Recent tasks have cleared that 
generalization loses some amount of information, especially for 
large (high-dimensional) data. Bucketization, is the another 
technique, does not prevent membership disclosure and does not 
apply for data that do not have a clear separation between 
quasi-identifying attributes and sensitive attributes. In this 
paper, we introduce technique called slicing, which partitions 
the data both horizontally and vertically. We represent that 
slicing preserves best data utility than generalization and can be 
used for membership disclosure protection. Another important 
advantage of slicing is that it can handle high-dimensional data. 
We shown how slicing can be used for attribute disclosure 
protection and develop an efficient algorithm for computing the 
sliced data that obey the ℓ-diversity requirement. Our workload 
experiments confirm that slicing preserves better utility than 
generalization and is more effective than bucketization in 
workloads involving the sensitive attribute. Our experiments 
also describes that slicing can be used to prevent membership 
disclosure. 
Key words: Generalization, buketization, slicing, ℓ-
diversity.   
 

INTRODUCTION 
Micro data has been studied extensively in recent years. The 
micro data contain records each of which contains 
information about an individual object, such as a person, a 
household, or an company. Several micro data economization 
techniques have been proposed. The most popular ones are 
generalization for k-anonymity and bucketization for ℓ-
diversity. In both approaches, attributes are partitioned into 
three categories:  
(a)  Attributes are identifiers that can uniquely identify an 

individual, such as Name or Identification Number;  
(b) Attributes are Quasi-Identifiers (QI), which the adversary 

(possibly from other publicly-available databases) and 
which, when taken together, can potentially identify an 
individual, e.g., Date of join, Sex, and Zip code;  

(c) Attributes are Sensitive Attributes (SAs), which are 
unknown to the adversary and are considered sensitive, 
such as Disease and Salary.  

In both generalization and bucketization, one first removes 
identifiers from the data and then partitions tuples into 
buckets. The two techniques differ in the next step. 
Generalization transforms the QI-values in each bucket into 
“less specific but semantically consistent” values so that 
tuples in the same bucket cannot be distinguished by their QI 
values. In bucketization, one separates the SAs from the QIs 
by randomly permuting the SA values in each bucket. The 

anonymized data consists of a set of buckets with permuted 
sensitive attribute values. 

EXISTING SYSTEM: 
First, many existing clustering algorithms (e.g., k- means) 
requires the calculation of the “centroids”. But there is no 
notion of “centroids” in our setting where each attribute 
forms a data point in the clustering space. Second, k-medoid 
method is very robust to the existence of outliers (i.e., data 
points that are very far away from the rest of data points). 
Third, the order in which the data points are examined does 
not affect the clusters computed from the k-medoid method. 
PROBLEMS IN EXITING SYSTEM 
1. Existing privacy measures for membership disclosure 

protection include differential privacy and presence.  
2. Existing anonymization algorithms can be used for 

column generalization, e.g., Mondrian. The algorithms 
can be applied on the sub table containing only attributes 
in one column to ensure the anonymity requirement.  

3. Existing data analysis (e.g., query answering) methods 
can be easily used on the sliced data. 

 
PROPOSED SYSTEM: 

We are proposing the technique called slicing, which will 
divide the data both horizontally and vertically. We show that 
slicing preserves better data utility than generalization and 
can be used for membership disclosure protection. Another 
important advantage of slicing is that it can handle high-
dimensional data. We show how slicing can be used for 
attribute disclosure protection and develop an efficient 
algorithm for computing the sliced data that obey the ℓ-
diversity requirement. Our workload experiments confirm 
that slicing preserves better utility than generalization and is 
more effective than bucketization in workloads involving the 
sensitive attribute. 
Advantages: 
1. We introduce a novel data anonymization technique 

called slicing to improve the current state of the art. 
2. We show that slicing can be effectively used for 

preventing attribute disclosure, based on the privacy 
requirement of ℓ-diversity. 

3. We develop an efficient algorithm for computing the 
sliced table that satisfies ℓ-diversity. Our algorithm 
partitions attributes into columns, applies column 
generalization, and partitions tuples into buckets. 
Attributes that are highly-correlated are in the same 
column. 

4. We conduct extensive workload experiments. Our results 
confirm that slicing preserves much better data utility 
than generalization. In workloads involving the sensitive 
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attribute, slicing is also more effective than 
bucketization. In some classification experiments, slicing 
shows better performance than using the original data 
(which may over fit the model). Our experiments also 
show the limitations of bucketization in membership 
disclosure protection and slicing remedies these 
limitations. 

 
Slicing Algorithms: 
Algorithm tuple-partition(T, ℓ) 
1. Q = {T}; SB = ∅. 
2. while Q is not empty 
3. remove the first bucket B from Q; Q = Q − {B}. 
4. split B into two buckets B1 and B2, as in Mondrian. 
5. if diversity-check(T, Q ∪ {B1,B2} ∪ SB, ℓ) 
6. Q = Q ∪ {B1,B2}. 
7. else SB = SB ∪ {B}. 
8. return SB. 
 
Algorithm diversity-check(T,T_, ℓ) 
1. for each tuple t ∈ T, L[t] = ∅. 
2. for each bucket B in T_ 
3. record f(v) for each column value v in bucket B. 
4. for each tuple t ∈ T 
5. calculate p(t,B) and find D(t,B). 
6. L[t] = L[t] ∪ {hp(t,B),D(t,B)i}. 
7. for each tuple t ∈ T 
8. calculate p(t, s) for each s based on L[t]. 
9. if p(t, s) ≥ 1/ℓ, return false. 
10. return true. 
 
Steps to achieve the specified Proposed Approach 
1. Original Data 
2. Generalized Data 
3. Bucketized Data 
4. Multi-set-based Generalization Data 
5. One-attribute-per-Column Slicing Data 
6. Sliced Data 
 
ORIGINAL DATA: 
We conduct extensive workload experiments. Our results 
confirm that slicing preserves much better data utility than 
generalization. In workloads involving the sensitive attribute, 
slicing is also more effective than bucketization. In some 
classification experiments, slicing shows better performance 
than using the original data. 
 

Age Material status Pin code District 
33 M 535557 VZM 
34 UM 535558 VZM 
45 M 535546 VSP 
50 M 534431 SKLM 
52 UM 534435 HYD 
60 M 534436 HYD 
60 UM 534431 SKLM 

Table 1. Original data 

GENERALIZED DATA: 
Generalized Data, in order to perform data analysis or data 
mining tasks on the generalized table, the data analyst has to 
make the uniform distribution assumption that every value in 
a generalized interval/set is equally possible, as no other 
distribution assumption can be justified. This significantly 
reduces the data utility of the generalized data. 
 

Age Material status Pin code District 
33-45 * 5355* VZM 
33-45 * 5355* VSP 
33-45 * 5355* VZM 
50-60 * 5344* SKLM 
50-60 * 5344* HYD 
50-60 * 5344* HYD 
50-60 * 5344* SKLM 

Table 2.  Geralizied table 
 
 

BUCKETIZED DATA: 
We show the effectiveness of slicing in membership 
disclosure protection. For this purpose, we count the number 
of fake tuples in the sliced data. We also compare the number 
of matching buckets for original tuples and that for fake 
tuples. Our experiment results show that bucketization does 
not prevent membership disclosure as almost every tuple is 
uniquely identifiable in the bucketized data. 
 

Age Material status Pin code District 
33 
34 
45 

M 
M 

UM 

535557 
535558 
535546 

VZM 
VZM 
VSP 

50 
52 
60 
60 

M 
M 

UM 
UM 

534431 
534435 
534436 
534431 

SKLM 
HYD 
HYD 

SKLM 
Table 3.  Bucketized Data: 

 
 

MULTI-SET-BASED GENERALIZATION DATA: 
We observe that this multi-set-based generalization is 
equivalent to a trivial slicing scheme where each column 
contains exactly one attribute, because both approaches 
preserve the exact values in each attribute but break the 
association between them within one bucket. 
 

 
Table 4.  Multi-set based generalized table 

 

Age 
Material 

status 
Pin code District 

33:1,34:1,45:1 M:2,UM:1 535546:1,535558:1,535557:1 VZM 
33:1,34:1,45:1 M:2,UM:1 535546:1,535558:1,535557:1 VSP 
33:1,34:1,45:1 M:2,UM:1 535546:1,535558:1,535557:1 VZM 
50:1,52:1,60:2 M:2,UM:2 534431:2,534435:1,534436:1 HYD 
50:1,52:1,60:2 M:2,UM:2 534431:2,534435:1,534436:1 SKLM 
50:1,52:1,60:2 M:2,UM:2 534431:2,534435:1,534436:1 SKLM 
50:1,52:1,60:2 M:2,UM:2 534431:2,534435:1,534436:1 HYD 
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ONE-ATTRIBUTE-PER-COLUMN SLICING DATA: 
We observe that while one-attribute-per-column slicing 
preserves attribute distributional information, it does not 
preserve attribute correlation, because each attribute is in its 
own column. In slicing, one group correlated attributes 
together in one column and preserves their correlation. For 
example, in the sliced table shown in Table correlations 
between Age and Material status and correlations between 
Pin code and District are preserved. In fact, the sliced table 
encodes the same amount of information as the original data 
with regard to correlations between attributes in the same 
column. 

 
 

 
 
 
 
 
 
 
 

Table 5.  One attribute per column slicing 
 
 

SLICED DATA: 
Another important advantage of slicing is its ability to handle 
high-dimensional data. By partitioning attributes into 
columns, slicing reduces the dimensionality of the data. Each 
column of the table can be viewed as a sub-table with a lower 
dimensionality. Slicing is also different from the approach of 
publishing multiple independent sub-tables in that these sub-
tables are linked by the buckets in slicing. 
 

      
Table 6.  Sliced table 

 
 
 

CONCLUSION 
In this paper, we consider slicing where each attribute is in 
exactly one column. An extension is the notion of 
overlapping slicing, which duplicates an attribute in more 
than one column. These releases more attribute correlations. 
For example, in Table, one could choose to include the 
Disease attribute also in the first column. That is, the two 
columns are {Age, Marital status} and {Pin code, District}. 
This could provide better data utility, but the privacy 
implications need to be carefully studied and understood. It is 
interesting to study the tradeoff between privacy and utility. 
We plan to study membership disclosure protection in more 
details. Our experiments show that random grouping is not 
very effective. We plan to design more effective tuple 
grouping algorithms. 
Slicing is a promising technique for handling high-
dimensional data. By partitioning attributes into columns, we 
protect privacy by breaking the association of uncorrelated 
attributes and preserve data utility by preserving the 
association between highly-correlated attributes. For 
example, slicing can be used for anonymizing transaction 
databases, which has been studied recently. 
Finally, while a number of anonymization techniques have 
been designed, it remains an open problem on how to use the 
anonymized data. In our experiments, we randomly generate 
the associations between column values of a bucket. This 
may lose data utility. Another direction to design data mining 
tasks using the anonymized data computed by various 
anonymization techniques. 
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Age Material status Pin code District 
33 
34 
45 

M 
M 

UM 

535557 
535558 
535546 

VZM 
VZM 
VSP 

50 
52 
60 
60 

M 
M 

UM 
UM 

534431 
534435 
534436 
534431 

SKLM 
HYD 
HYD 

SKLM 

 (Age, Material status) (Pin code, District) 
(33,M) 
(34,M) 

(45,UM) 

(535557,VZM) 
(535558,VZM) 
(535546,VSP) 

(50,M) 
(52,M) 

(60,UM) 
(60,UM) 

(534431,SKLM) 
(534435,HYD) 
(534436,HYD) 

(534431,SKLM) 
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